Prova CFR1.2

(points: 52; bonus: 0^{\flat} ; time: 42')

Nome: Odvos

2025-05-23

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $(\forall x) [\text{Colar}(x) \implies \neg \text{Passar}(x, \text{FMC2})].^2$
- VI. Responda dentro das caixas indicadas.
- VII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
- VIII. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.
 - IX. Escolha até 2 dos L, M, J.
 - X. Provas violando as restrições de escolha não serão corrigidas (tirarão 0 pontos).

Definição. Seja $\mathscr A$ uma família de conjuntos. Chamamos a $\mathscr A$ de \subseteq -chain sse todos os seus membros são (\subseteq)-compráveis, ou seja, sse:

para todo $A, B \in \mathcal{A}$, temos $A \subseteq B$ ou $B \subseteq A$.

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

- (21) **L1.** Seja $\mathscr C$ uma \subseteq -chain, e seja $T=\bigcup\mathscr C$. Demonstre: $\mathscr C\cup\{T\}$ é uma chain.
- (28) **L2.** Seja $(A_n)_n$ uma sequência de conjuntos. Definimos os conjuntos

$$A_* = \bigcup_{i=0}^{\infty} \bigcap_{j=i}^{\infty} A_j \qquad A^* = \bigcap_{i=0}^{\infty} \bigcup_{j=i}^{\infty} A_j.$$

Demonstre que $A_* \subseteq A^*$.

Resolução da L2 .

Seja
$$\times \in \bigcup_{i=0}^{\infty} \bigcap_{j=1}^{\infty} A_{j}$$
.

Logo seja $u > 0$ tq. $\bigcap_{j=1}^{\infty} A_{j}$, ou seja: $(\forall j > u)(\times \in A_{j})$.

Seja $r > 0$. $--AUO$. $\times \in \bigcup_{j=1}^{\infty} A_{j}$.

Seja $m = \max_{j=1}^{\infty} r u$.

Como $m > r$, basta demonstrar $\times \in A_{m}$.

Como $m > u$, $\times \in A_{m}$, [pela escolha de u]

(24) **I**

Investiga a (\leq_c)-monotonicidade das (\times) e (\rightarrow). INVESTIGAÇÃO.

(*)
$$equiv (\leq_c)$$
 -monotona nes dois argumentos.

 $A \leq_c A' \vdash A \times B \leq_c A' \times B$

Seja $f : A \rightarrow A'$. Considere a $f \times id : A \times B \rightarrow A' \times B$.

 $B \leq_c B' \vdash A \times B \leq_c A \times B' : Similar$

(\$\rightarrow \text{\$\text{\$monoton_2 no Segundo.}} \quad \text{\$\text{\$\text{\$o\$}} \text{\$\text{\$o\$} \text{\$ho} \text{\$\text{\$o\$}} \text{\$\text{\$o\$}} \quad \text{\$\text{\$o\$} \text{\$\text{\$o\$} \text{\$o\$}} \text{\$\text{\$o\$} \text{\$o\$} \

Seja $f: A \to A$, e seja F o conjunto de todos os fixpoints da f:

$$F = \{ x \in A \mid x \text{ \'e um fixpoint da } f \}$$

Demonstre as igualdades seguintes:

$$f[F] = F f^{-1}[F] = F$$

Em exatamente uma das 4 inclusões podes assumir como hipotese extra que f é injetiva, ou que f é sobrejetiva (tua escolha). Deixe isso claro na primeira linha da tua demonstração.

J1. Demonstração de $f[F] \subseteq F$.

```
Seja \times_{\circ} \in F.

-- f \times_{\circ} \in f[F] arbitrário

(alc: f(f \times_{\circ}) = f \times_{\circ} [\times_{\circ} fixpoint)

Logo f \times_{\circ} \in F.
```

J2. Demonstração de $f[F] \supseteq F$.

```
Seja x_0 \in F, on seja, x_0 fixpoint de f.

Logo x_0 = f x_0

\in f(F). (x_0 \in F)
```

J3. Demonstração de $f^{-1}[F] \subseteq F$.

```
Extra hipotese: f injetiva

Seja t \in f^{-1}(F).

Logo f t \in F, ou seja, f(f t) = f t.

Logo f t = t. [f inj.]
```

J4. Demonstração de $f^{-1}[F] \supseteq F$.

```
Seja x_0 \in F.

Logo x_0 \stackrel{f}{\mapsto} x_0 \in F.

Logo x_0 \in f^{-1}[F]
```

RASCUNHO