Sejam A conjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

(≺) é bem-fundada ⇔ (≺) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

(29) **P**

SejamPe Qposets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

$$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$$

Demonstre que φ é injetora.

DEMONSTRAÇÃO.

Sejam
$$x, y t \cdot q \cdot \Psi(x) = \Psi(y) \cdot V$$

(Como $\Psi(x) \neq_{Q} \Psi(x)$, logo $\Psi(x) \neq_{Q} \Psi(y) \cdot [(Q \text{ poset}) \cdot \text{refl} (x) \neq_{Q} \Psi(x)]$

Ana logamente, como $\Psi(y) \neq_{Q} \Psi(y)$, logo $\Psi(y) \neq_{Q} \Psi(x)$.

Logo, temos $x \neq_{P} y \cdot y \neq_{P} x \cdot [\Psi \text{ order-embedding}]$.

(?)

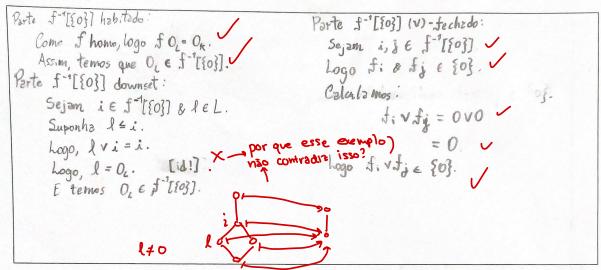
Logo, $x = y \cdot [(P \text{ poset}) \cdot \text{antisymm}]$

II. Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}[0]$ é um ideal de L.

I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal. Demonstração da 11.



(29) C

Escolhe exatamente uma das C1, C2, C3.

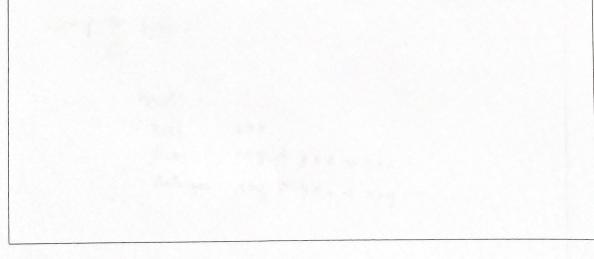
Em qualquer reticulado.

C1.
$$x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z) \& x \vee (y \wedge z) \geq (x \vee y) \wedge (x \vee z);$$
 (safe-distr)

C2.
$$x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$$
 (safe-modul)

C3.
$$(-\vee c)$$
 e $(-\wedge c)$ são monótonas. (monotonicity)

Demonstração de ___.



Só isso mesmo.

Sejam A conjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

Sworka (K) é her-frendeda.

Sworka @ Jul existe (and J. 9. ... az x az x ao.

Sefa (an) J. J. ... az x az x ao.

Logo A C A Polhui om mendro (K)-minimal. [Ké hem kundada]

Sefa om J. J. om (K)-minimal.

Logo, sefa i J. J. az = m. [(an) é una sed de membros do A]

Contradição. [m (K)-minimal]

Contradição. [m (K)-minimal]

(29) **P**

SejamPe Qposets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

 $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$

Demonstre que φ é injetora. Demonstração.

Sejam A conjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

	teo conti
Strang an opening sec	
Committee Transport	
Calle, deservoire and employ accoming to	
wisan majawa kasi a kara safian	
F (RESTORE)	
folias de razoração sertos acides de asacias	
was instrumental and an energy of a place of all and a storage.	
0.1	
to the Calabarate entrances of the education of the	

(29) **P**

SejamPe Qposets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

 $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$

Demonstre que φ é injetora.

Demonstração.

- II. Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L.
- I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal.

DEMONSTRA	ÇÃO	DA	

(29) **C**

Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

- C1. $x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z) \& x \vee (y \wedge z) \geq (x \vee y) \wedge (x \vee z);$ (safe-distr)
- C2. $x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$ (safe-modul)
- C3. $(-\vee c)$ e $(-\wedge c)$ são monótonas. (monotonicity)

Demonstração de Ca

Sup $x \le Z$.

Sup $x \le Z$.

Sorba demonstron que $x \le (x \lor y) \land Z^{(2)}$ obo zela obsorção.

C $(y \land Z) \le (x \lor y) \land Z$.

Ponta (I): Bonta que $x \le (x \lor y)$ e $x \le Z$.

[$x \land (x \lor y) = x$]: $x \land (y \lor x) = x$. Imediato.

Pela (Comut.) e (Abs.). [$x \le Z$]: Imediato.

Ponta (I): Bonta que $(y \land Z) \le (x \lor y)$ e $(y \land Z) \le Z$.

[$(y \land Z) \lor y = y$]: Imediato pela Absorção.

Bonta que $(y \land Z) \lor (x \lor y)$ e $(x \lor y)$?

Só isso mesmo.

 $x \vee (y \wedge x) = x$ $x \wedge (y \vee x) = x$ $x \wedge (y \vee x) = x$ $x \wedge (y \vee x) = x$ $x \wedge (y \vee x) = x$

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

	compare the could problem to a committee and reading of the partner on absolute amounts. If
(29)	${f P}$
	Sejam P e Q posets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e refleto as ordens:
	$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$

Demonstre que φ é injetora. DEMONSTRAÇÃO.

II. Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L. I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal. Demonstração da $_$.

(29) C

Escolhe exatamente uma das C1, C2, C3.

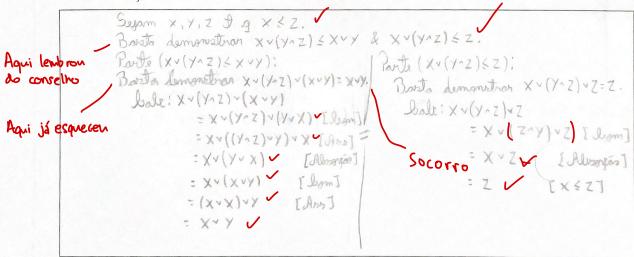
Em qualquer reticulado,

C1. $x \wedge (y \vee z) \ge (x \wedge y) \vee (x \wedge z) \& x \vee (y \wedge z) \ge (x \vee y) \wedge (x \vee z);$ (safe-distr)

C2. $x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$ (safe-modul)

C3. $(-\vee c)$ e $(-\wedge c)$ são monótonas. (monotonicity)

Demonstração de $\frac{C2}{}$.



Sejam A conjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

(29) ${\bf P}$

Sejam P e Q posets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

$$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$$

Demonstre que φ é injetora.

DEMONSTRAÇÃO.

- II. Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L.
- I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal. Demonstração da $_$.

(29) C Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

- C1. $(x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z) \& x \vee (y \wedge z)$ (safe-distr)
- C2. $x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$

(safe-modul)

C3. $(- \lor c)$ e $(- \land c)$ são monótonas.

(monotonicity)

Demonstração de 😃.

Porte × Λ ($y \vee z$) \gtrsim ($\times \Lambda y$) \vee ($\times \Lambda z$)

Basica demonstron × Λ ($y \vee z$) \Rightarrow $\times \Lambda y$ \in × Λ ($y \vee z$) \Rightarrow × Λy Porte × Λ ($y \vee z$) \Rightarrow × Λy Basica demonstron × χ × Λy \in $y \vee z$ \Rightarrow × Λy Porte × \Rightarrow × Λy :

Include pela absorgão

Porte $y \vee z \gg \times \Lambda y$:

Cole ($\times \Lambda y \wedge \Lambda$ ($y \vee z$) = × $\Lambda (y \wedge (y \vee z))$ ($\Lambda - \Lambda y$)

= × Λy Porte × Λ ($y \vee z$) \Rightarrow × Λz :

Similar. — $n\bar{s}o$ parece tanto!Porte × V ($y \wedge z$) \Rightarrow ($X \vee y$) Λ ($X \vee z$)

Similar. (1)

O converso da artistimetria

Guponha a = b.

Parte a = b

Lumos a = a. [s -repl]

Logo a = b. [a=b].

Parte b = a

Similar weird!

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

(29) **P**

Sejam P e Q posets, e $\varphi: P \hookrightarrow Q$ um <u>order-embedding,</u> ou seja, uma função que preserve e reflete as ordens: $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$

Demonstre que φ é injetora. $(\forall_{x,y})[\varphi(x) = \varphi(y) \Rightarrow x = y]$ DEMONSTRAÇÃO.

- **I1.** Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L.
- I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal. Demonstração da $_$.

The second design of the

(29) **C**

Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

- C1. $x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z)$ & $x \vee (y \wedge z) \geq (x \vee y) \wedge (x \vee z)$; (safe-distr)
- C2. $x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$ (safe-modul)
- C3. $(-\vee c)$ e $(-\wedge c)$ são monótonas. (monotonicity)

DEMONSTRAÇÃO DE <3.

```
Sejem x, y: L +.q. x & y.

Parte (-nc) monotona:

Caso y nc = c:

Caso x nc = x:

Logo y vc ≥ y ≥ x.

Logo y vc ≥ c.

Caso x nc = c:

Caso x nc = c:

Caso y nc = y:

Caso x nc = x:

Imediato [x ≤ y]

Caso x nc = c:

Logo y ≥ c
```

1 Não tive ideiz melhor : P

Só isso mesmo.

Teve sim : b

Sejam P, Q posets e φ: P → Q um order-embedding. Von demonstrar que (∀x,y:P)[x<y ⇒ φx<φy](Lema1).

Sejam x,y:P +.q. x<y.

Logo φx<φy [φ order-embedding].

Caso φx < φy:

Imediato.

Caso φx = φy:

Logo x≥y. [φ order-embedding]

Contradição.

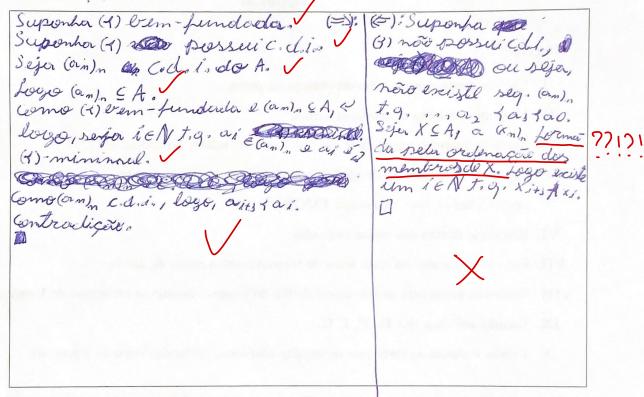
L

Sejam Aconjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) .

DEMONSTRAÇÃO.



(29) **P**

SejamPe Qposets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

$$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$$

Demonstre que φ é injetora.

DEMONSTRAÇÃO.



Sejam A conjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (⇒) e dê um esboço da (⇐). magið DEMONSTRAÇÃO.

(29) **P**

SejamPe Qposets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

$$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$$

Demonstre que φ é injetora.

DEMONSTRAÇÃO.

Sejam a, b
$$\in$$
 P tq $\varphi(a) = \varphi(b)$.
Logo $\varphi(a) \leq_a \varphi(b) \neq_a \varphi(a)$. [(\leq) antissim.] X
Logo $a \leq_p b \neq_a b \leq_p a$. [escalha de φ]-¹
Logo $a = b$ [(\leq) antissim.]

II. Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L.

I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal.

Demonstração da __.

(29) C	Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

C1. $x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z) \& x \vee (y \wedge z) \geq (x \vee y) \wedge (x \vee z);$ (safe-distr)

C2. $x_i \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$ (safe-modul)

C3. $(-\vee c)$ e $(-\wedge c)$ são monótonas. (monotonicity)

DEMONSTRAÇÃO DE C1.

Só isso mesmo.

	-
(00)	1
(29)	D

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da $(\Leftarrow).$

DEMONSTRAÇÃO.

P

Sejam P e Q posets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

$$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$$

Demonstre que φ é injetora.

Demonstração.

o que injetora» significa?

Segam x, y tais que $z \leq_{\varrho} y$ Suponha $\psi(x) = \psi(y)$ for $y \leq_{\varrho} x$, $\psi(x) = \psi(y) \leq_{\varrho} \psi(x)$. Lomo $\psi(y) \leq_{\varrho} \psi(x)$, $\psi(x) = \psi(x)$ frestiva a ordem.]

Logs (orno $x \leq_{\varrho} y = y \leq_{\varrho} x$, $\psi(x) = y = y$. [...]

(29) I

Demonstre exatamente uma das I1, I2.

II. Sejam L,K reticulados cotados e $f:L\to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L. I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal.

Demonstração da __.

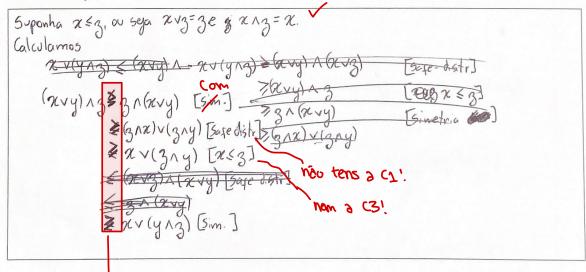
(29) C

Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

- C1. $x \land (y \lor z) \ge (x \land y) \lor (x \land z) \& x \lor (y \land z) \ge (x \lor y) \land (x \lor z);$ (safe-distr)
- $\mathbf{C2.} \hspace{1cm} x \leq z \implies x \vee (y \wedge z) \leq (x \vee y) \wedge z; \hspace{1cm} (\text{safe-modul})$
- C3. $(-\vee c)$ e $(-\wedge c)$ são monótonas. (monotonicity)

DEMONSTRAÇÃO DE CZ.



→ Ossim só é gOrantido que será considerado errado! 💥

Só isso mesmo.

	-
(29)	1)
(29)	L

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) .

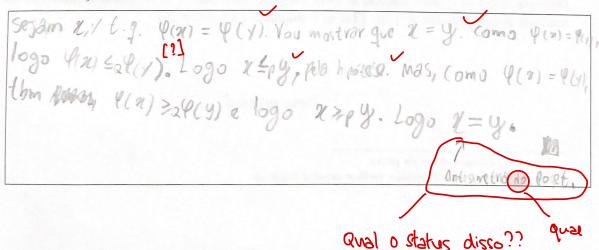
(29) ${\bf P}$

SejamPe Qposets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

$$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$$

Demonstre que φ é injetora.

DEMONSTRAÇÃO.



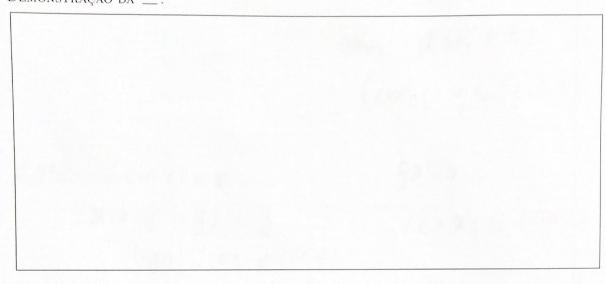
(29) I

Demonstre exatamente uma das I1, I2.

II. Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L. I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal. Demonstração da $_$.



(29) C

Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

- C1. $\left[x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z) \middle| \& \middle| x \vee (y \wedge z) \geq (x \vee y) \wedge (x \vee z); \right]$ (safe-distr)
- C2. $x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$ (safe-modul)
- C3. $(-\vee c)$ c $(-\wedge c)$ são monótonas. (monotonicity)

DEMONSTRAÇÃO DE CS. 7 N QUICO SAMO 2X

```
Suponha x \neq y.

Parte (-vc):

(avc) = x

(avc) = x

(avc) x = x

(avc)
```

lascomo Es.

Qual disjunção nos teus dados tá usando para essa separação em casos?

Sejam A conjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

Suporte =>
Suporte (A) é b. f.

Suporte (A) é b. f.

Suporte (A) gossui c.d. i

Lopo, seja (an) n. t.g. philanti and de (en) n

Como M E (an) n., seja mominimo de (en) n

Como M E (an) n., seja mominimo de (en) n

Logo anti Lan

Logo anti Lan

Logo anti Lan

Controdiçõe.

-- Parte 1=

Suporte A n. p. c.d. i

Seja x E A hob quem é?

seja x E A vis quem é?

seja x E X X I X X finito | controdiçõe

(29) **P**

Sejam P e Q posets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

 $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$

Demonstre que φ é injetora.

DEMONSTRAÇÃO.

Sejam $x,y \in \mathcal{A}$ Suportha $\mathcal{Q}(x) = \mathcal{Q}(y)$ logo $\mathcal{Q}(x) \leq \mathcal{Q}(y) \leq \mathcal{Q}(y) \leq \mathcal{Q}(x)$, Reb (Lemma 1) logo $x \leq y$ $\leq y \leq x$, pera (\mathcal{Q} i order-embedding). Logo x = y, Rela \mathcal{C} -antissimetria) (lemme 1) (Va, v) [a = b =) a = b & b = a]

Sefam a. b

Suporta a = b

-- Parte a = b

com (= seq1), hape a = a

logo a = b

-- Parte b = a

Similar

weird (see p.10)

Sejam A conjunto e (\prec) uma relação binária sobre A. Considere a afirmação:

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

Suponha (1) bem fundacka. Como ACA, loguo seja ma im Wiminimal do A.

Suponha uma c.d.i. no A.

Loguo existe um nEN t.q. em m. X por que?

Seja n EN t.q. an m.

Mar m é minimal, então an m é

uma contradição.

Suponha (1) mão possui c.d.i.

Seja XCA.

Separe varo exista um minimal ou não pelo L.E.M.

Se existe, então é bem fundacho.

Se não existe, então é inferível que (x) possui c.d.i.

Contradição pela (1).

(29) **P**

Sejam P e Q posets, e $\varphi: P \hookrightarrow Q$ um order-embedding, ou seja, uma função que <u>preserve</u> e <u>reflete</u> as ordens: $x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$

Demonstre que φ é injetora.

DEMONSTRAÇÃO.

Sejam $x, y \in P$ $f.q. \varphi(x) = \varphi(y)$.

Logo $\varphi(x) \leq_{\alpha} \varphi(y)$ a $\varphi(y) \leq_{\alpha} \varphi(x)$. $[(\leq)-refl]$ Logo $\chi \leq_{\beta} \chi$ a $\chi \leq_{\beta} \chi$. $[h.(\leq)]$ Logo $\chi = \chi$. $[(\leq)-antinimetria]$

	T
(29)	
(29)	

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

(29) **P**

SejamP e Q posets, e $\varphi:P\hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens:

$$x \leq_P y \iff \varphi(x) \leq_Q \varphi(y).$$

Demonstre que φ é injetora.

Demonstração.

Sejam
$$X, X' \in P$$
 to $\varphi(X) = \varphi(X')$.

Preciso mostrar $x = X'$.

Como $\varphi x = \varphi x'$ logo $\varphi x \not\in \varphi x'$ & $\varphi x' \not\in \varphi x$. [$\varphi x \in \varphi x'$] demonstrar!

Logo $\chi \not\in \chi'$ & $\chi' \not\in \chi$. [$\varphi x \in \varphi x'$]

Logo $\chi = \chi'$ [Antissim.]

II. Sejam L, K reticulados cotados e $f: L \to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L. I2. Seja L reticulado e

 $J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal. Demonstração da $\underline{\hspace{0.4cm}}$.

(29) C

Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

- C1. $x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z) \& x \vee (y \wedge z) \geq (x \vee y) \wedge (x \vee z);$ (safe-distr)
- C2. $x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$ (safe-modul)
- C3. $(-\vee c)$ e $(-\wedge c)$ são monótonas. (monotonicity)

Demonstração de **C1**.

Parte X N () V Z) ≥ (X N Y) V (X N Z):

| Basta demonstrar X N () V Z) ≥ X N Y & X N () V Z) ≥ X N Z.

| Parte X N () V Z) ≥ X N Y:

| Basta demonstrar X ≥ X N Y & Y V Z ≥ X N Y.

| Parte X ≥ X N Y:

| X = X V (X N Y) [abs]

| Parte Y V Z ≥ X N Y:

| (a) (a) (a) (a) (a) (a) (b) (b) (b) (b) (b) (c)

| Parte X N () V Z) ≥ X N Z: Similar (c)

| Parte X N () N Z) ≥ (X N Y) N (X N Z): Similar (c)

Só isso mesmo.

	-
(29)	D
(29)	

 (\prec) é bem-fundada \iff (\prec) não possui c.d.i.

Demonstre a (\Rightarrow) e dê um esboço da (\Leftarrow) . DEMONSTRAÇÃO.

(29) **P**

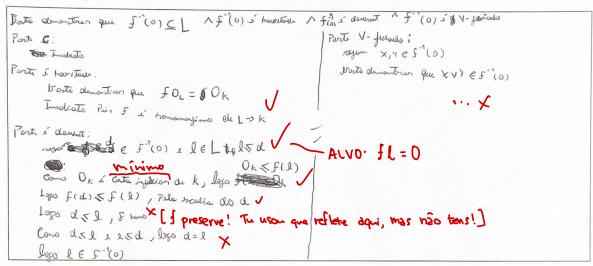
Sejam P e Q posets, e $\varphi: P \hookrightarrow Q$ um order-embedding, ou seja, uma função que preserve e reflete as ordens: $\overbrace{x \leq_P y \iff \varphi(x) \leq_Q \varphi(y)}^{\bullet}.$

Demonstre que φ é injetora. – $(\forall x, y \in P) [\psi(x) = \psi(y) = x = y]$ DEMONSTRAÇÃO.

II. Sejam L,K reticulados cotados e $f:L\to K$ homomorfismo. Logo $f^{-1}(0)$ é um ideal de L. I2. Seja L reticulado e

$$J_0 \subseteq J_1 \subseteq J_2 \subseteq \cdots$$

uma (\subseteq)-cadéia de ideais de L. Logo $\bigcup_n J_n$ é um ideal. Demonstração da \mathbb{I}_1 .



(29) **C**

Escolhe exatamente uma das C1, C2, C3.

Em qualquer reticulado,

- C1. $x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z) \& x \vee (y \wedge z) \geq (x \vee y) \wedge (x \vee z);$ (safe-distr)
- C2. $x \le z \implies x \lor (y \land z) \le (x \lor y) \land z;$ (safe-modul)
- C3. $(-\vee c)$ e $(-\wedge c)$ são monótonas. (monotonicity)

Demonstração de ___.