Prova IEA.1

(points: 28; bonus: 0^{\flat} ; time: 48')

Nome: Θάνος Gabarito

2024-04-05

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).¹
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $(\forall x) [\operatorname{Colar}(x) \Longrightarrow \neg \operatorname{Passar}(x, \operatorname{FMC2})]^2$
- VI. Responda dentro das caixas indicadas.
- VII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
- VIII. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.
 - IX. Provas violando as restrições de escolha não serão corrigidas (tirarão 0 pontos).

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

- (8) **A1.** Seja 9 grupo. Demonstre: $(\forall a, c) (\exists! t) [at = c]$.
- (14) **A2.** Seja (*) : $\alpha \times \alpha \to \alpha$ operação binária, associativa e com identidade e. Demonstre que (\uparrow_L) = (\uparrow_R), onde (\uparrow_L), (\uparrow_R) : $\alpha \times \mathbb{N} \to \alpha$ definidas recursivamente pelas:

$$a \uparrow_{\mathbf{L}} 0 = e$$
 $a \uparrow_{\mathbf{R}} 0 = e$ $a \uparrow_{\mathbf{L}} (n+1) = (a \uparrow_{\mathbf{L}} n) * a$ $a \uparrow_{\mathbf{R}} (n+1) = a * (a \uparrow_{\mathbf{R}} n).$

DEMONSTRAÇÃO DE (AMBAS).

A1. Sejam $a, c \in G$. Existência: Calculamos:

$$a(a^{-1}c) = (aa^{-1})c$$
 (ass.)
= ec (invL)
= c (idR)

Unicidade: Seja t tal que at = c.

Basta demonstrar que $t = a^{-1}c$. Calculamos:

$$a^{-1}c = a^{-1}(at)$$
 (escolha de x)
 $= (a^{-1}a)t$ (ass)
 $= et$ (inv)
 $= t$ (id)

A2. Sejam $a:\alpha,n:\mathbb{N}$. Por indução no n.

Bases n := 0, 1: Temos

$$a \uparrow_{\mathbf{L}} 0 = e = a \uparrow_{\mathbf{R}} 0;$$

 $a \uparrow_{\mathbf{L}} 1 = (a \uparrow_{\mathbf{L}} 0)a = ea = a = ae = a(a \uparrow_{\mathbf{R}} 0) = a \uparrow_{\mathbf{R}} 1.$

Passo indutivo: Seja $k \in \mathbb{N}$, tal que $k \geq 2$ e:

$$a \uparrow_{\mathcal{L}} (k-1) = a \uparrow_{\mathcal{R}} (k-1)$$
 (HI1)
 $a \uparrow_{\mathcal{L}} (k-2) = a \uparrow_{\mathcal{R}} (k-2).$ (HI2)

Precisamos demonstrar que $a \uparrow_L k = a \uparrow_R k$. Calculamos:

$$\begin{array}{lll} a \uparrow_{\rm L} k = (a \uparrow_{\rm L} (k-1)) * a & ((\uparrow_{\rm L}).2) \\ & = (a \uparrow_{\rm R} (k-1)) * a & ({\rm HI1}) \\ & = (a * (a \uparrow_{\rm R} (k-2))) * a & ((\uparrow_{\rm R}).2) \\ & = a * ((a \uparrow_{\rm R} (k-2)) * a) & ({\rm g.ass}) \\ & = a * ((a \uparrow_{\rm L} (k-2)) * a) & ({\rm HI2}) \\ & = a * (a \uparrow_{\rm L} (k-1)) & ((\uparrow_{\rm L}).2) \\ & = a * (a \uparrow_{\rm R} (k-1)) & ({\rm HI1}) \\ & = a \uparrow_{\rm R} k & ((\uparrow_{\rm R}).2) \end{array}$$

(14) \mathbf{B}

Escolha um dos **B1**, **B2**.

- (8) **B1.** Seja \mathcal{G} grupo. Sejam H_1, H_2 subgrupos de \mathcal{G} . Demonstre: $H_1 \cap H_2 \leq \mathcal{G}$.
- (14) **B2.** Seja \mathcal{G} grupo. Seja \mathcal{H} uma família de subgrupos de \mathcal{G} . Demonstre: $\bigcap \mathcal{H} \leq \mathcal{G}$.

Demonstração de (ambas) .

B2. Parte $\bigcap \mathcal{H}$ é id-fechado:

e pertence a todos os membros da $\mathscr H$ (pois todos são subgrupos), logo $e\in \bigcap \mathscr H.$

Parte $\bigcap \mathcal{H}$ é op-fechado:

Sejam $a,b\in \bigcap \mathcal{H}$, ou seja a pertence a todos os membros de \mathcal{H} e similarmente sobre o b.

Para mostrar $ab \in \bigcap \mathcal{H}$, basta mostrar que ab pertence a um arbitrário membro da \mathcal{H} .

Seja $H \in \mathcal{H}$. Pela escolha do a temos que $a \in H$, e similarmente $b \in H$.

Como $H \leq \mathcal{G}$, logo H é op-fechado, e logo $ab \in H$. Logo $ab \in \mathcal{H}$. Parte $\bigcap \mathcal{H}$ é inv-fechado:

Seja $a \in \bigcap \mathcal{H}$, ou seja a pertence a todos os membros de \mathcal{H} .

Para mostrar $a^{-1} \in \bigcap \mathcal{H}$, basta mostrar que a^{-1} pertence a um arbitrário membro da \mathcal{H} .

Seja $H \in \mathcal{H}$. Pela escolha do a temos que $a \in H$. Como $H \leq \mathcal{G}$, logo é inv-fechado, e logo $g^{-1} \in H$.

B1. Caso especial do **B2** com $\mathscr{H} = \{H_1, H_2\}$. (Para demonstrar em forma direta, basta substituir o $\bigcap \mathscr{H}$ por $H_1 \cap H_2$ e frases como «(todos) os membros da \mathscr{H} » por « H_1, H_2 ».)

Só isso mesmo.

LEMMATA

I .		