Prova 2.1

(points: 100; bonus: 8^{\flat} ; time: 90')

Nome:

18/10/2019

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $(\forall x) [\text{Colar}(x) \implies \neg \text{Passar}(x, \text{FMC1})].^2$
- VI. Use caneta para tuas respostas.
- VII. Responda dentro das caixas indicadas.
- VIII. Escreva teu nome em cada folha de rascunho extra antes de usá-la.
 - IX. Entregue todas as folhas de rascunho extra, juntas com tua prova.
 - X. Nenhuma prova será aceita depois do fim do tempo—mesmo se for atraso de 1 segundo.
 - **XI.** Os pontos bônus podem ser usados para aumentar uma nota de qualquer unidade, dado que a nota original é pelo menos 5,0.3
- XII. Escolhe até 2 dos D, E, F, G.⁴

Lembram-se:

Definição. Dados $n, k \in \mathbb{N}$ denotamos por C(n, k) a quantidade de maneiras que podemos escolher k objetos (sem repetições) de n objetos (distintos).

Definição. Sejam a, b inteiros. Um inteiro d é um maior divisor comum dos a, b sse d é um divisor comum dos a, b, divisível por todo divisor comum dos a, b.

$$d \in \text{um m.d.c dos } a, b \iff d \mid a \& d \mid b \& (\forall c) [c \mid a \& c \mid b \implies c \mid d].$$

Denotamos por gcd(a, b) ou por (a, b) o maior divisor comum não negativo dos a, b.

Boas provas!

¹Ou seja, desligue antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Por exemplo, 25 pontos bonus podem aumentar uma nota de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

⁴Provas violando essa regra (com respostas em mais problemas) não serão corrigidas (tirarão 0 pontos).

(32)	D
(16)	D1. Deriva Resolução.
(16)	D2. Demonstre formalmente:
	$para\ todo\ n \geq 1$
	Dica: Se usar «» na tua demonstração "formal", melhor não escolher esse problema.

tais que	9.	sãc sãc balavras:		
Demonstração.	`		, <u> </u>	
E2.	combinação linear			
Resolução.				

(42) \mathbf{E}

(42) \mathbf{F} Definimos Demonstre que para todo $n \in \mathbb{N}$, DEMONSTRAÇÃO.

		_
	- \	
(1	6)	
۱, Т	.07	

Demonstre ou refute a proposição seguinte:

Proposição.	Sejam $a, b \in$	\mathbb{Z} . Se					
		, então					
			lstesposta!	sxisə sb (odnamat o sdl	E tácil. O	Dica:
DEMONSTRAC	ção / Refuta	ĄÇÃO.					

