Prova 2

(points: 108/100; bonus: 0^{\flat} ; time: 90°)

Nome: $\Theta \acute{\alpha} \lor \circ \varsigma$ Gabarito

09/06/2017

Regras:

- I. Não vires esta página antes do começo da prova.
- II. Nenhuma consulta de qualquer forma.
- III. Nenhum aparelho ligado (por exemplo: celular, tablet, notebook, etc.).¹
- IV. Nenhuma comunicação de qualquer forma e para qualquer motivo.
- V. $\forall x (\text{Colar}(x) \rightarrow \neg \text{Passar}(x, \text{FMC2})).^2$
- VI. Use caneta para tuas respostas.
- VII. Responda dentro das caixas indicadas.
- VIII. Escreva teu nome em cada folha de rascunho extra, antes de usá-la.
 - IX. Entregue todas as folhas de rascunho extra, juntas com tua prova.
 - X. Nenhuma prova será aceita depois do fim do tempo.
 - XI. Os pontos bônus serão considerados apenas para quem conseguir passar sem.³
- XII. Escolha até 3 dos A, B, C, D, E para resolver.⁴

Boas provas!

¹Ou seja, deslique antes da prova.

²Se essa regra não faz sentido, melhor desistir desde já.

³Por exemplo, 25 pontos bonus podem aumentar uma nota de 5,2 para 7,7 ou de 9,2 para 10,0, mas de 4,9 nem para 7,4 nem para 5,0. A 4,9 ficaria 4,9 mesmo.

⁴Provas com respostas em mais que 3 partes não serão corrigidas (tirarão 0 pontos).

Lembre-se:

Definição 1. Um conjunto estruturado $\mathcal{G} = \langle G ; e, * \rangle$ é um grupo sse:

$$(\forall a, b \in G) [a * b \in G] \tag{G0}$$

$$(\forall a, b, c \in G) [a * (b * c) = (a * b) * c]$$
(G1)

$$(\forall a \in G) [e * a = a = a * e] \tag{G2}$$

$$(\forall a \in G) (\exists a' \in G) [a' * a = e = a * a']$$
(G3)

Denotamos o inverso de $a \in G$ garantido pela (G3) com a^{-1} ou (-a), dependendo se usamos notação multiplicativa ou aditiva para o grupo.

Definição 2. Um conjunto estruturado $\mathcal{R} = \langle R; 0, +, \cdot \rangle$ é um anel sse:

$$(\forall x, y \in R) \left[x + y \in R \right] \tag{A0}$$

$$(\forall x, y, z \in R) \left[x + (y+z) = (x+y) + z \right] \tag{A1}$$

$$(\forall x \in R) \left[0 + x = x = x + 0 \right] \tag{A2}$$

$$(\forall x \in R) (\exists x' \in R) [x' + x = 0 = x + x']$$
(A3)

$$(\forall x, y \in R) [x + y = y + x] \tag{A4}$$

$$(\forall x, y \in R) [x \cdot y \in R] \tag{M0}$$

$$(\forall x, y, z \in R) [x \cdot (y \cdot z) = (x \cdot y) \cdot z]$$
(M1)

$$(\forall x, y, z \in R) \left[x \cdot (y+z) = x \cdot y + x \cdot z \right]$$
 (DL)

$$(\forall x, y, z \in R) [(y+z) \cdot x = y \cdot x + z \cdot x]$$
(DR)

Denotamos o inverso de $x \in R$ garantido pela (A3) com (-x). Se no R existe elemento neutro da \cdot , o denotamos com 1 ou 1_{\Re} ; ele é único e satisfaz:

$$(\forall x \in R) \left[i \cdot x = x = x \cdot i \right] \tag{M2}$$

Nesse caso chamamos o anel \mathcal{R} anel com unidade. Se a · é comutativa, chamamos o \mathcal{R} anel comutativo.

Definição 3. Sejam G grupo $g \in G$, e $A, B \subseteq G$. Definimos

$$gA \stackrel{\text{\tiny def}}{=} \{ga \mid a \in A\} \qquad \qquad AB \stackrel{\text{\tiny def}}{=} \{ab \mid a \in A, \ b \in B\} \qquad \qquad \dots \text{etc.}$$

Definição 4. Um homomorfismo φ do grupo $\langle A ; e_A, \cdot_A \rangle$ para o grupo $\langle B ; e_B, \cdot_B \rangle$ é uma função $\varphi : A \to B$ tal que para todo $x, y \in A$, $\varphi (x \cdot_A y) = \varphi(x) \cdot_B \varphi(y)$.

Definição 5. Um subgrupo $N \leq G$ é subgrupo normal de G sse

$$N \leq G \iff \text{para todo } g \in G \text{ e } n \in N, \ gng^{-1} \in N$$
 $\iff \text{para todo } g \in G, \ gN = Ng$

Seja G grupo e $H \leq G$. Defina:

$$a \sim b \iff ab^{-1} \in H.$$

(18) **A1.** Prove que \sim é uma relação de equivalência. Prova.

REFLEXIVIDADE:

Seja $a \in G$. Temos $aa^{-1} = e \in H$, pois $H \leq G$, e logo $a \sim a$.

SIMETRIA:

Sejam $a, b \in G$ com $a \sim b$, equivalentemente $ab^{-1} \in H$. Logo, como $H \leq G$,

$$H \ni (ab^{-1})^{-1} = (b^{-1})^{-1}a^{-1} = ba^{-1}.$$

Ou seja, $b \sim a$.

TRANSITIVIDADE:

Seja, $a,b,c \in G$ com $a \sim b$ e $b \sim c$. Equivalentemente $ab^{-1},bc^{-1} \in H$. Como $H \leq G$, também $H \ni ab^{-1}bc^{-1} = aec^{-1} = ac^{-1}$. Logo $a \sim c$.

- (18) **A2.** Prove que para todo $a, b \in G$:
 - (i) se $a \in H$ e $b \in H$, então $a \sim b$;
- (ii) se $a \in H$ e $b \notin H$, então $a \not\sim b$.

PROVA.

- (i) Suponha $a, b \in H$. Como $b \in H$ e $H \leq G$, $b^{-1} \in H$. Logo $ab^{-1} \in H$ pela (G0).
- (ii) Suponha $a,b \in G$ com $a \in H$ e $b \notin H$ (logo também temos $b^{-1} \notin H$ pois H sendo grupo é fechado pelos inversos). Para chegar num absurdo, suponha que $ab^{-1} \in H$. Agora, como $a \in H$, então $a^{-1} \in H$, e logo $a^{-1} (ab^{-1}) \in H$. Agora temos:

$$H \ni a^{-1}(ab^{-1}) = (a^{-1}a)b^{-1} = eb^{-1} = b^{-1} \notin H,$$

que é absurdo. Concluimos que $ab^{-1} \notin H$, logo $a \not\sim b$.

(36) \mathbf{B}

Um anel $\langle B; 0, +, \cdot \rangle$ com unidade é booleano sse $p^2 = p$ para todo $p \in B$. Prove que:

- (18) (i) p + p = 0 para todo $p \in B$;
- (18) (ii) B é um anel comutativo.

Dica: Calcule o $(p+q)^2$.

Prova.

Seguindo a dica calculamos:

$$(p+q)^{2} = (p+q)(p+q)$$

$$= (p+q)p + (p+q)q$$

$$= pp + qp + pq + qq$$

$$= p^{2} + qp + pq + q^{2}$$

$$= p + qp + pq + q.$$
(B booleano)

Mas como B é booleano temos também $(p+q)^2=p+q$. Ou seja

$$p + q = p + qp + pq + q$$

e cancelando os p e q ganhamos

$$qp + pq = 0 (1)$$

ou seja, pq = -qp

- (i) Botando p=q na (1) ganhamos: $p^2+p^2=0$, e como B é booleano, p+p=0.
- (ii) Usando a (i) e a (1) ganhamos pq + pq = 0 = qp + pq e cancelando os pq na direita chegamos no pq = qp.

- (36) C
- (18) C1. Sejam A e B grupos. Prove que se φ é um homomorfismo de A para B, então:

(i)
$$\varphi(e_A) = e_B$$

(ii)
$$\varphi(x^{-1}) = (\varphi(x))^{-1}$$

Prova.

(i) Usando a (G2) e a hipótese que φ é homomorfismo temos $\varphi(e_A) = \varphi(e_A e_A) = \varphi(e_A) \varphi(e_A)$ Multiplicando os dois lados pela direita com $(\varphi(e_A))^{-1}$ temos:

$$\varphi(e_A)(\varphi(e_A))^{-1} = \varphi(e_A)\varphi(e_A)(\varphi(e_A))^{-1}$$
ou seja,
$$e_B = \varphi(e_A).$$

(ii) Graças a unicidade de inversos em grupos, basta apenas verificar que o $\varphi(x^{-1})$ realmente é o inverso de $\varphi(x)$. Calculamos então o

$$\varphi(x)\varphi(x^{-1}) = \varphi(xx^{-1})$$
 (φ homo)
= $\varphi(e_A)$ (G3)
= e_B . (pela (i))

Ou seja, $(\varphi(x))^{-1} = \varphi(x^{-1})$.

(18) **C2.** Considere os grupos $\mathbf{R} = \langle \mathbb{R} \setminus \{0\} ; \cdot \rangle$ e $\mathbf{Z} = \langle \mathbb{Z} ; + \rangle$. Denota seus subgrupos cíclicos gerados por 2 com $\langle 2 \rangle_{\mathbf{R}}$ e $\langle 2 \rangle_{\mathbf{Z}}$ respectivamente. Ache um isomorfismo entre os $\langle 2 \rangle_{\mathbf{R}}$ e $\langle 2 \rangle_{\mathbf{Z}}$ (e prove que realmente é isomorfismo).

Resposta & Prova.

Observe que

$$\langle 2 \rangle_{\mathbf{Z}} = \{ 2m \mid m \in \mathbb{Z} \}$$
 e $\langle 2 \rangle_{\mathbf{R}} = \{ 2^m \mid m \in \mathbb{Z} \}$.

Naturalmente definimos a $F:\langle 2\rangle_{\mathbf{Z}} \to \langle 2\rangle_{\mathbf{R}}$ tal que $2m\mapsto 2^m$:

$$F(x) = 2^{x/2}.$$

A F É BIJETORA: Trivial: a preimagem do aleatorio $2^m \in \langle 2 \rangle_{\mathbf{R}}$ é o 2m, e

$$2m \neq 2m' \implies m \neq m' \implies 2^m \neq 2^{m'}$$
.

A F É UM HOMOMORFISMO DE $\langle 2 \rangle_{\mathbf{Z}}$ PARA $\langle 2 \rangle_{\mathbf{R}}$: Sejam $x,y \in \langle 2 \rangle_{\mathbf{Z}}$. Temos:

$$F(x+y) = 2^{(x+y)/2}$$
 (def. F)

$$= 2^{x/2+y/2}$$
 (aritmética)

$$= 2^{x/2} \cdot 2^{y/2}$$
 (aritmética)

$$= F(x) \cdot F(y).$$
 (def. F)

Logo, a F é um isomorfismo de $\langle 2 \rangle_{\mathbf{Z}}$ para $\langle 2 \rangle_{\mathbf{R}}$.

(36) \mathbf{D}

Seja G grupo e $N \leq G$. Prove que o conjunto G/N de todos os right cosets⁵ de N com a operação \bullet definida pela

$$(Na) \bullet (Nb) \stackrel{\text{def}}{=} (Na)(Nb)$$

é um grupo.

PROVA.

Precisamos verificar os (G0)–(G3).

(G0): Tomamos $A, B \in G/N$ e logo A = Na e B = Nb para alguns $a, b \in G$. Calculamos

$$A \bullet B = (Na)(Nb)$$
 (def. \bullet)
 $= N(aN)b$ (G1 & Def. 3)
 $= N(Na)b$ (G1 & Def. 3)
 $= (NN)(ab)$ (G1 & Def. 3)
 $= N(ab)$ (Lemma*)
 $\in G/N$ ($ab \in G$)

(G1): Garantida pela associatividade de G (G1) e a Definição 3: tomando $A, B, C \in G/N$ temos A = Na, B = Nb, C = Nc para alguns $a, b, c \in G$. Agora observe:

$$A \bullet (B \bullet C) = Na(NbNc) = NaN(bc) = Na(bc) = N(ab)c = (NaNb)Nc = (A \bullet B) \bullet C.$$

(G2): A identidade do G/N é a coclasse N=Ne, pois tome uma coclasse arbitraria $A \in G/N$ (logo A=Na para algum $a \in G$) e calcule:

$$A \bullet N = (Na)(Ne) = N(ae) = Na.$$

(G3): Vamos achar o inverso do arbitrario $A \in G/N$. Temos então A = Na para algum $a \in G$. Afirmamos que $A^{-1} = Na^{-1}$:

$$A \bullet A^{-1} = (Na)(Na^{-1}) = N(aa^{-1}) = Ne.$$

Lemma*. Se $H \leq G$, então HH = H.

PROVA.

" $H \subseteq HH$ ": Tome $h \in H$. Como h = eh e $e \in H$ (pois $H \subseteq G$), temos $h = eh \in HH$.

" $HH\subseteq H$ ": Tome $x\in HH$. Pela definição de HH então $x=h_1h_2$ para alguns $h_1,h_2\in H,$ e como $H\leq G,$ temos $H\ni h_1h_2=x.$

⁵coclasses à direita

- (36) \mathbf{E}
- (18) **E1.** Prove/refuta a afirmação: Se G é um grupo e $H_1, H_2 \leq G$, então $H_1 \cup H_2 \leq G$. PROVA/REFUTAÇÃO.

Contraexemplo: Tome

$$G := \langle \mathbb{Z} ; + \rangle$$

$$H_1 := 2\mathbb{Z}$$

$$H_2 := 3\mathbb{Z}$$
e logo
$$H_1 \cup H_2 = \{ m \in \mathbb{Z} \mid 2 \mid m \text{ ou } 3 \mid m \}$$

Obviamente $H_1, H_2 \leq G$. Mas observe que $2, 3 \in H_1 \cup H_2 \not\supset 2+3$.

(18) **E2.** Sejam G grupo e \mathcal{H} uma família não vazia de subgrupos de G. Prove que:

$$\bigcap \mathcal{H} \leq G$$
.

PROVA.

Obviamente $\bigcap \mathcal{H} \subseteq G$, então precisamos mostrar que:

 $\bigcap \mathscr{H}$ FECHADO PELA OPERAÇÃO DE G

Tome $h_1, h_2 \in \cap H$. Pela definição da \cap , temos que $h_1, h_2 \in H$ para todo $H \in \mathcal{H}$. Como cada $H \leq G$, também temos que $h_1h_2 \in H$ para todo $H \in \mathcal{H}$. Ou seja, $h_1h_2 \in \cap \mathcal{H}$.

 $\bigcap \mathcal{H}$ FECHADO PELOS INVERSOS:

Similar. Aqui a mesma ideia escrita num estilo diferente:

$$h \in \bigcap \mathcal{H} \implies (\forall H \in \mathcal{H}) [h \in H] \qquad (\text{def. } \bigcap)$$

$$\implies (\forall H \in \mathcal{H}) [h^{-1} \in H] \qquad (H \leq G)$$

$$\implies h^{-1} \in \bigcap \mathcal{H}. \qquad (\text{def. } \bigcap)$$